
Journal of Statistical Physics, Vol. 38, Nos. 3/4, 1985 

Augmented Langevin Approach to Fluctuations 
in Nonlinear Irreversible Processes 

John D .  R a m s h a w  1 

Received June 27, 1984 

A Fokker-Planck equation derived from statistical mechanics by M. S. Green 
[J. Chem. Phys. 20:1281 (1952)] has been used by Grabert et al. [Phys. Rev. A 
21:2136 (1980)] to study fluctuations in nonlinear irreversible processes. These 
authors remarked that a phenomenological Langevin approach would not have 
given the correct reversible part of the Fokker-Planck drift flux, from which 
they concluded that the Langevin approach is untrustworthy for systems with 
partly reversible fluxes. Here it is shown that a simple modification of the 
Langevin approach leads to precisely the same covariant Fokker-Planck 
equation as that of Grabert et al., including the reversible drift terms. The 
modification consists of augmenting the usual nonlinear Langevin equation by 
adding to the deterministic flow a correction term which vanishes in the limit of 
zero fluctuations, and which is self-consistently determined from the assumed 
form of the equilibrium distribution by imposing the usual potential conditions. 
This development provides a simple phenomenologicai route to the Fokker- 
Planck equation of Green, which has previously appeared to require a more 
microscopic treatment. It also extends the applicability of the Langevin 
approach to fluctuations in a wider class of nonlinear systems. 

KEY WORDS: Langevin equation; Fokker-Planck equation; fluctuation- 
dissipation theorem; fluctuations; noise; irreversible processes; nonlinear 
dynamics. 

1. I N T R O D U C T I O N  

In con t ras t  to l inear  i r revers ible  t h e r m o d y n a m i c s ,  ~1'2) whose  p roper  

fo rmu la t i on  is well  es tabl ished and genera l ly  accepted ,  the theory  o f  

non l inea r  i r revers ible  p rocesses  is still in a state o f  flux. Never the less ,  the 

determinis t ic  nonl inear  t heo ry  has acqu i red  a ra ther  conven t iona l  

~Theoretical Division, University of California, Los Alamos National Laboratory, Los 
Alamos, New Mexico 87545. 

669 

0022-4715/85/0200-0669504.50/0 �9 1985 Plenum Publishing Corporation 



670 Ramshaw 

formulation in which the equations of motion for the relevant macroscopic 
variables x = (x~, x 2,..., x.)  are written in the generalized Onsager form (3'4) 

= L(x). VS(x) (1) 

where S(x) is the entropy of the macrostate x, and V = ~/c~x. The transport 
matrix L(x) may be resolved into symmetric and antisymmetric parts, 

L(x) = D(x) + A(x)  

D(x) = i l L ( x )  + Lr (x) ]  

A(x)  = �89 [L(x) - LT(X)] 

(2) 

(3) 

(4) 

where superscript T denotes the transpose. The antisymmetric matrix A(x) 
generates the ideal or reversible part of the dynamics (e.g., convection terms 
and pressure forces), while the symmetric matrix D(x) generates the 
dissipative part (e.g., viscous and friction terms). These interpretations follow 
from the fact that the time rate of change of the entropy is 

= v s .  o .  v s  (5) 

to which A does not contribute and which vanishes if D = 0. The second law 
of thermodynamics requires that D be positive definite. 

The above deterministic description does not allow for fluctuations in 
the variables x that arise from couplings to the microscopic degrees of 
freedom not included in the macrostate. The introduction of fluctuations 
makes x(t) a random process. Under the assumption that this process is 
Markovian, M. S. Green (5) derived from statistical mechanics a Fokker-  
Planck equation for p(x, t), the probability distribution of the variables x at 
time t. A more systematic statistical-mechanical derivation was subsequently 
given by Zwanzig (6'~) using projection-operator techniques. In the covariant 
formulation of Grabert, Graham, and Green (3) (GGG), this Fokker-Planck 
equation takes the form 

t~fl +V" (pL. VS)=kBV. [V" CoD)-pgl/ZV. (g-1/2lT)] 
c~t 

(6) 

where k s is Boltzmann's constant and g(x) is the determinant of a metric 
tensor in state space. This equation admits the stationary solution 

w(x)  = Wo g - ~ n ( x )  exp S ( x ) / G  - ~B~(x (7) 
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where the Bi(x ) are constants of the motion that are separately conserved by 
both the ideal and dissipative parts of the dynamics, so that 

A �9 V B  i =  D �9 V B  i =  0 (8) 

and the fli are arbitrary constants. The normalization constant w 0 is to be 
chosen so that f dx w(x) = 1. 

The derivations of Green and Zwanzig were based on statistical 
mechanics. A more common way of obtaining Fokker-Planck equations is 
the phenomenological approach of postulating an appropriate Langevin 
equation (usually by adding a white noise term to the deterministic 
dynamics) and converting it to the equivalent Fokker-Planck equation.(8'9) It 
is natural to inquire whether Eq. (6) can be obtained in this way, thereby 
circumventing the need for a fully microscopic derivation. This question was 
briefly considered by GGG, who thought that the answer must in general be 
negative. The reason given was that the term p g l / 2 V .  ( g - 1 / 2 A )  appearing in 
Eq. (6) would not properly arise in the Langevin treatment, and G G G  
concluded on this basis that the phenomenological Langevin approach is 
untrustworthy for systems with partly reversible fluxes (i.e., nonzero A). 

Our purpose here is to present a simple and natural modification of the 
Langevin approach which, when applied to the dynamical system of Eq. (1), 
leads precisely to Eq. (6). The appropriate modification is suggested by van 
Kampen's observation (1~ that in a nonlinear Langevin equation of the form 
i = A ( x ) + G ( x ) .  ~(t) (where ~(t) is white noise), the function A(x) is 
phenomenologically uncertain to within terms of the order of the fluc- 
tuations. Thus, instead of identifying A(x) with the function U(x) appearing 
in the deterministic dynamics i = U(x), one is free to set A(x) = U(x) + F(x), 
where F(x) is some function which vanishes in the limit of zero fluctuations. 
The function F(x) may then be determined from the assumed form of the 
equilibrium distribution by imposing the usual potential conditions. (3'9'11) In 
the present context, it will be seen that this procedure leads directly to 
Eq. (6) in a remarkably straightforward way. 

The present development thereby provides a simple phenomenological 
route to the Fokker-Planck equation of M. S. Green, which has previously 
appeared to require a more microscopic derivation. It also extends the 
applicability of the Langevin approach to a wider class of fluctuating 
nonlinear systems. This lends increased confidence in the prospects for 
correct Langevin treatments of fluctuations in other nonlinear dissipative 
systems. Of course, we do not mean to minimize the notorious hazards of 
nonlinear Langevin equations, which have been quite properly emphasized 
by van Kampen. "~ It remains generally true that nonlinear Langevin 
equations must be used with extreme caution. But neither should one 
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minimize the fact that when used with care and some awareness of the 
pitfalls, such equations can lead to correct results in a very simple manner, 
as the present development illustrates. It now appears, in retrospect, that 
many of the earlier difficulties, which at first appeared to reflect fundamental 
shortcomings in the Langevin approach, were simply due to an insufficiently 
complete allowance for the phenomenological uncertainty in the Langevin 
function A(x). 

2. CONVENTIONAL AND AUGMENTED NONLINEAR 
LANGEVIN EQUATIONS 

We begin with a brief recapitulation of the conventional Langevin 
procedure for introducing fluctuations into a deterministic nonlinear 
dynamical system of the form 

i = U(x) (9) 

In this procedure, one adds a white noise term to the deterministic dynamics 
to obtain 

/~ = U(x)  + ~ ( x ) .  ~(t) (10) 

where ~(t) is an n-dimensional vector whose components are independent 
zero-mean normalized Gaussian white noises. Thus (~( t ) ) - -0  and 
(~(t) ~(t + T) )=  16(r), where I is the unit matrix and the angular brackets 
( . . . )  denote an appropriately weighted ensemble average over all possible 
realizations of ~(t). 

Since the coefficient of ~(t) in Eq. (10) depends on x, an interpretation 
rule is needed (l~ which we take to be that of Stratonovich. The Stratonovich 
rule is appropriate if we regard the white noise as the limit of colored noise 
for vanishing autocorrelation time, and it has the desirable feature that 
nonlinear transformations of the stochastic variables may be performed by 
the ordinary rules of calculus. ~~ With this interpretation, the Fokker-  
Planck equation equivalent to Eq. (10) is (8'9) 

~p 
et + v .  (pU)= �89 I t .  [v. ~oG)]/ 01) 

The crux of this approach is clearly the proper identification of U and 
G. Evidently U governs the dynamics in the absence of fluctuations, but 
frequently the fluctuations are intrinsic ("internal noise") and U is not 
directly accessible. In such cases, all that is known is the dynamics with fluc- 
tuations present, expressed in the form of phenomenological equations of 
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motion ( i ) =  U*((x))  for the mean values. Because of the nonlinearity, the 
identification of U with U* is not permissible~l~ the difference may be 
regarded as a fluctuation renormalization effect. (7'12-16) In this situation, the 
usual phenomenological practice has been to assume that U and U* have 
essentially the same mathematical form but differ in the values of the various 
parameters (e.g., viscosities, friction coefficients, etc.) appearing therein. (The 
function U contains "bare" parameters 2i, while U* contains corresponding 
"renormalized" parameters 2*. It is the 2* that are measured in ordinary 
experiments governed by the mean equations of motion.) This assumption 
determines the form of U but not the bare parameters L;, which remain 
phenomenologically undetermined and are therefore to be regarded as 
adjustable parameters in the theory. For given values of the ;%, one then 
attempts to choose G in such a way that Eq. (11) admits the known 
equilibrium distribution as a stationary solution. If desired, one can go on to 
derive approximate closed equations for (x) from Eq. (11) by fluctuation 
renormalization techniques. ~7'12-16) This then establishes the connection 
between the )~i and ~*, and if the latter are known from experimental 
measurements one can hope to infer the corresponding values of the former. 

The problem with the conventional approach just outlined is that one 
has no real basis for assuming that the Langevin equation should contain a 
function of even the same form as U*. As emphasized by van Kampen, (~~ 
all that can safely be said is that the function appearing in the Langevin 
equation is inherently uncertain, from a phenomenological point of view, to 
within terms of the order of the fluctuations. In general, there is no reason to 
suppose that this uncertainty does not involve differences in functional form 
as well as a renormalization of parameters. 

Up until now, this uncertainty has apparently been regarded simply as a 
basic flaw in the Langevin approach to nonlinear problems. We propose 
instead to make it the basis of an augmented Langevin approach in which 
the phenomenological uncertainty is explicitly recognized from the outset 
and used to advantage. In this approach, Eq. (10) is replaced by 

= U(x) + F(x) + G(x).  ~(t) (12) 

where U(x) is identified just as in the conventional Langevin approach, and 
F(x) is an as yet undetermined correction term which is required to vanish in 
the limit of zero fluctuations (i.e., as G ~ 0). The inherent phenomenological 
uncertainty in the Langevin equation is now explicitly recognized by the 
presence of F(x), which by definition is a term of the order of the fluc- 
tuations. The Fokker-Planck equation equivalent to Eq. (12) is 

~p 
- -  7 V  cq t + V .  (pU)+ V- (pF)= 1 �9 {G- [V. (,oG)]} (13) 
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For given values of the 2 i, one now attempts to choose both F and G in such 
a way that Eq. (13) admits the known equilibrium distribution as a 
stationary solution. The manner in which this is done will become clear in 
the next section. 

Equation (13) may be rewritten as 

ep 
- ~ v  �9 v p )  et + v .  (pu) + v .  (pv) =1  . (/- (14) 

where F(x) = G(x).  Gr(x) and 

V(x) = F(x) -- ~G(x) �9 [V. G(x)] (15) 

Since F is required to vanish as G ~ 0 the same is true of V, and we can 
henceforth regard V rather than F as the auxiliary vector to be determined. 
Once V supersedes F, G enters into Eq. (14) only through the symmetric 
positive definite matrix/-, and there is no loss of generality in supposing G to 
be symmetric and positive definite as well. Then G is just the positive square 
root of/-,  and knowledge of / -  is equivalent to knowledge of G. Now, instead 
of focusing directly on F and G, one determines V and/ -  in such a way that 
the known equilibrium distribution is a steady solution of Eq. (14). The 
positive square root o f / -  is then identified with G, and G together with V 
determines F via Eq. (15). All quantities in the augmented Langevin 
equation (12) are then known, and the physical situation of interest can be 
studied by means of either Eq. (12) or Eq. (14), whichever is more con- 
venient. 

Although we have adopted the Stratonovich interpretation of stochastic 
equations such as Eq. (12), the augmented Langevin approach yields 
equivalent results when the It6 interpretation (1~ is used. This is a conse- 
quence of the presence of F in the formulation, and is not true for the 
conventional Langevin approach. The reason for the equivalence is that if 
Eq. (12) were interpreted in the It6 sense, Eq. (14) would still obtain but with 
G �9 (V �9 G) replaced by V �9 in Eq. (15). However, this different relation 
between F and V does not affect the determination of V and/-, which quan- 
tities will therefore have the same values as before so that the same Fokker-  
Planck equation results. The change in Eq. (15) does affect the value of F, 
but that is because Eq. (12) has become an It6 equation; the change in F 
simply effects the conversion from a given Stratonovich equation to an 
equivalent It6 equation. Our somewhat arbitrary adoption of the 
Stratonovich interpretation therefore does not give rise to any corresponding 
arbitrariness in the final results. The augmented Langevin approach conse- 
quently has the desirable and advantageous feature that the choice of 
stochastic interpretation rule is devoid of physical consequences, in contrast 
to the conventional Langevin approach. (1~ 
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3. A U G M E N T E D  LANGEVIN DERIVATION OF GREEN'S 
F O K K E R - P L A N C K  EQUATION 

We now proceed to apply the augmented Langevin approach to the 
generalized Onsager dynamics of Eq.(1). We first set U = / . V S ,  
whereupon Eq. (14) becomes 

ep 
- -  = 5V  Vp) 8t + V.  (pl_. VS) + V .  (pV) i . (/-. (16) 

Next we require that the equilibrium distribution w(x) of Eq. (7) be a 
stationary solution of Eq. (16). This requirement will be met by imposing the 
potential conditions (3' 9,11) 

V.  [w(A. VS + V,)] = 0 (17) 

w(O. VS + V/) = �89 Vw (18) 

where V R + V~--V. These conditions are sufficient but not necessary for w 
to be stationary. Their physical justification lies in their equivalence to the 
property of detailed balance. ~9'11) Detailed balance is not a universal 
property of stationary distributions, ~9'1~ but it is a general feature of true 
thermodynamic equilibrium ~'9'1~ and this suffices for its applicability in the 
present context. Detailed balance is also quite common in nonequilibrium 
steady states as a consequence of symmetry constraints on transition rates.~9) 

The first potential condition, Eq.(17), states that the stationary 
distribution would remain stationary even in the absence of irreversibility. 
The second potential condition, Eq. (18), states that the irreversible part of 
the probability flux (and not merely its divergence) vanishes in steady state. 
Since there is no apparent reason to suppose that the vector V is purely 
reversible or irreversible in nature, it has been resolved into a reversible part 
V R and an irreversible part V t, which will need to be determined separately. 
Their sum then gives the vector V to be used in Eq. (16). 

Equation (18) can be explicitly solved for V l, with the result 

Now u and Vl are independent, so they must separately vanish in the limit 
of zero fluctuations. But Eq. (19) for V~ contains a term --D �9 VS which 
involves only deterministic quantities that are independent of the size of the 
fluctuations. To prevent this term from contributing to V~, we impose the 
nonlinear fluctuation-dissipation relation 

F(x) = 2k, D(x) (20) 
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Since F also vanishes in the limit of zero fluctuations, Eq. (20) shows that a 
self-consistent passage to this limit requires kB--* 0 as well. ~3'4) Once this 
connection is established, letting kn --* 0 is in fact the most convenient way to 
take the limit. It then follows from Eq. (20) that F vanishes like k 8 (and 
hence G vanishes like k~/2) as k B--*0. By virtue of Eqs. (20) and (8), 
Eq. (19) now reduces to 

V , = k ~ g ' / Z D  �9 Vg 1/2 (21) 

The determination of V R proceeds in a similar manner. Combining Eqs. 
(7) and (17) and making use of Eq. (8), we obtain 

[ '~B 1 '/2VR] VS V" (g-1/2VR)= g-1/2V R . Z f l i V B i -  V .  (g 1/2A)+t-7-g- 
i 

(22) 

But Eq. (22) contains a source term [V �9 (g-1/2A)] �9 VS which involves only 
deterministic quantities that are independent of the size of the fluctuations. 
To prevent this term from making a contribution to V R which does not 
properly vanish as kR-~ 0, we impose the condition 

1 
V,  (g-1/2A) Jr- kBB g-I/2VR = 0 (23) 

which is evidently a reversible analog of the fluctuation-dissipation relation 
(20). However, Eq. (20) did not directly involve Vj, whereas the condition 
(23) already implies that V R must be given by 

V g = --k B gl/2V �9 (g-~/2A) (24) 

and it is necessary to verify that this V R is actually a solution of the full 
Eq. (22). One readily verifies that Eq. (24) does in fact satisfy Eq. (22), 
because 

V.  (g-'/2VR) = -kz  VV : (g -  1/2A) = 0 

and 

g '/2V R �9 VB i = - k B [ V .  (g- ' /ZA)]  �9 VB,  = 0 

where use has been made of Eq. (8) and the antisymmetry of A. 
Combining V~ and Vz, we obtain 

V = V  R + V z = k ,  gl/2[O �9 Vg ,/2 - V .  (g 1/2A)] (27) 

The final Fokker-Planck equation is obtained by combining Eqs. (20) and 
(27) with Eq. (16). When this is done we obtain, after a little algebra, 

(25) 

(26) 
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precisely the Fokker-Planck equation of M. S. Green, Eq. (6). The 
corresponding Langevin equation is Eq. (12), in which G is the positive 
square root of F, and F is obtained from V by Eq. (15). 

4. C O N C L U D I N G  R E M A R K S  

We have described an augmented Langevin approach to fluctuations in 
nonlinear irreversible systems, which is a simple and natural extension of the 
conventional Langevin approach. Application of the augmented Langevin 
approach to the generalized Onsager formulation of nonlinear irreversible 
thermodynamics has been shown to lead directly to the Fokker-Planck 
equation of M. S. Green, which has previously appeared to require a more 
elaborate microscopic derivation. This lends support to the hope and expec- 
tation that the same approach will provide correct Langevin treatments of 
fluctuations in a broader class of nonlinear dissipative systems. The 
advantage of the augmented Langevin approach is that it is simple, 
straightforward, and physically transparent. Its disadvantage is that, like the 
conventional Langevin approach, it is purely phenomenological in nature, 
and the limits of its validity are therefore not at present known. (In 
particular, its applicability to systems without detailed balance is unclear.) 
Nevertheless, the augmented Langevin approach appears to be significantly 
broader in scope than the conventional Langevin approach, and further 
insight into its domain of validity may be expected to emerge as further 
applications and comparisons with microscopic theory are made. 

Finally, it may be noted that even without the introduction of F(x) there 
is somewhat more freedom in the Langevin approach than is sometimes 
recognized. We refer to the freedom associated with the choice of the noise 
coefficient matrix G(x), which is customarily taken to be symmetric but need 
not be. (9) In fact, by imposing certain subsidiary conditions on G(x) it is 
possible to give a more conventional Langevin derivation of Eq. (6) without 
introducing F(x) at all, provided that n ~> 3. (The suggestion to the contrary 
by GGG appears to have been implicitly based on the simple subsidiary 
condition V �9 (g-1/2G) = 0,  which is inappropriate here unless 
V.  (g-~/2A)=0 as well.) This approach is briefly summarized in an 
Appendix. It may at first seem preferable to the approach taken in the main 
development, as it appears to avoid the introduction and determination of the 
new quantity F(x). However, its appeal is specious. The fact that this 
approach breaks down for n = 1 and 2 is an indication that it is not really 
fundamental, and even for n/> 3 the required subsidiary conditions on G are 
differential equations whose self-consistency and solvability are by no means 
obvious. The development using F(x) is actually simpler, as it eliminates the 
complicated subsidiary conditions on G. This enables the symmetry of G to 
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be preserved, and the determination of G is then simply an algebraic problem 
rather than a differential one. But more important than considerations of 
simplicity is the fact that the introduction of F(x) is in closer accord with the 
physics of the situation, as it directly reflects and exploits the inherent 
phenomenological uncertainty in the Langevin function A(x). Because of this 
uncertainty, it is inappropriate to force an identification of the Langevin 
A(x) with the deterministic U(x). The complicated subsidiary conditions on 
G given in the Appendix are artifacts of this forced identification and are 
devoid of physical significance; this awkwardness is completely eliminated 
by introducing F(x). 
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APPENDIX 

Here we wish to explore the consequences of introducing fluctuations 
into Eq. (1) by the conventional Langevin approach, in which F---0. We 
shall see that one can partially compensate for the absence of F by making 
maximum use of the available freedom in the choice of the noise coefficient 
matrix G. (9) Thus G will not here be taken to be symmetric and positive 
definite as it was in the main text. However, we shall also find that this 
compensation is ultimately unsatisfactory and the augmented Langevin 
approach is to be preferred. 

The simplest way to proceed is to follow through the development of 
Section 3 with the understanding that now F = 0 and G is asymmetric. This 
means that Eq. (15), which previously determined F in terms of V and G, 
must now be regarded as a set of subsidiary conditions on G in terms of V. 
Combining Eqs. (15) and (27) and setting F = 0, we obtain 

G �9 (V. G)=-2kBg'/Z[D �9 V g - 1 / 2 - V .  (g 1/2A)] (A1) 

Equation (20) still applies, with F =  G.  G r, so that Eq. (A1) may be 
rewritten in the equivalent form 

G.  IV. (g-1/2G)] = 2kBV. (g 1/2A) (A2) 

Since/- and D are symmetric, Eq. (20) represents �89 + 1) conditions on the 
n 2 elements of G. Equation (A2) constitutes a set of n additional subsidiary 
conditions on the elements of G. Barring accidental degeneracies, therefore, 
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the simultaneous satisfaction of  all these conditions will be possible only 
when n 2 ) � 8 9  i.e., n ) 3 .  Thus for systems of  three or more 
dependent variables, it is potentially possible to choose G in such a way that 
both Eqs. (20) and (27) continue to hold even with F = 0, so that Green's 
Fokker -Planek  equation (6) continues to obtain. Of  course, the actual 
solution for G is an unappealing prospect, since the subsidiary conditions of  
Eq. (A2) are a system of partial differential equations for the elements of  G. 
Indeed, it is not even clear that these conditions are self-consistent, or if so 
that a solution can be found. 

It is interesting to note that when V �9 (g 1/2A) = 0, Eq. (A2) reduces to 
the much simpler condition 

V .  (g - ' /ZG)  = 0 (A3) 

which is the covariant analog of  the condition V .  G--= 0 mentioned by 
Graham. ~9) If  one were to impose Eq. (A3) in general, Eq. (A2) would no 
longer be satisfied and hence Eq. (6) would no longer result. This appears to 
have been the basis for the statement by G G G  that the Langevin approach 
may not be correct for nonlinear systems with partly reversible fluxes. The 
problem, however, lies not in the Langevin approach but in the use of  an 
inappropriate subsidiary condition, Eq. (A3), instead of  the proper one, 
Eq. (A2) .  Nevertheless, this conventional Langevin approach is still 
unsatisfactory, both because of  the curious restriction to n/> 3 and because 
of  the complexity and inconvenience of  the subsidiary conditions of  
Eq. (A2). 
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